
CS 5348 Operating Systems

Project 1: Shell Program

Version 1.0, 1st Sep 2021

Due date: 24th Sep 2021

This project is a group project. The group size is 2. It must be implemented in C. Sharing

your work with others outside of your group is strictly prohibited.

You can develop the project in csgrads1/cs3/csjaws. Compile the code in any of the cs*

machines. However, do not test/execute in the cs* machines. Use any of the {net01,…,

net45} machines for program execution. You may create large number of processes due

to a bug (more on how to handle forkbomb later). You do not want to slow down the cs*

machines by executing in them. CSTech does not take kindly if you do this. If you are

caught executing your program in any of the cs* machines, you will be given a ticket. For

every ticket you receive, we will deduct 5 points from your final score.

Unix Shell

In this project, you will build a simple Unix shell. The shell is the heart of the command-

line interface, and thus is central to the Unix/C programming environment. Mastering use

of the shell is necessary to become proficient in this world; knowing how the shell itself is

built is the focus of this project.

There are three specific objectives to this assignment:

• To further familiarize yourself with the Unix/Linux programming environment.

• To learn how processes are created, destroyed, and managed.

• To gain exposure to the necessary functionality in shells.

Overview

In this assignment, you will implement a command line interpreter (CLI) or, as it is more

commonly known, a shell. The shell should operate in this basic way: when you type in a

command (in response to its prompt), the shell creates a child process that executes the

command you entered and then prompts for more user input when it has finished.

The shells you implement will be like, but simpler than, the one you run in Unix. If you do

not know what shell you are running, it's probably bash. One thing you should do on your

own time is learn more about your shell, by reading the man pages or other online

materials.

Program Specifications

Basic Shell: tash
Your basic shell, called tash (short for TexAs SHell), is basically an interactive loop: it

repeatedly prints a prompt tash> (note the space after the greater-than sign), parses the

input, executes the command specified on that line of input, and waits for the command

to finish. This is repeated until the user types exit. The name of your final executable

should be tash.

The shell can be invoked with either no arguments or a single argument; anything else is

an error. Here is the no-argument way:

prompt> ./tash
tash>

At this point, tash is running, and ready to accept commands. Type away!

The mode above is called interactive mode. It allows the user to type commands directly.

The shell also supports a batch mode, which instead reads input from a batch file and

executes commands from therein. Here is how you run the shell with a batch file

named batch.txt:

prompt> ./tash batch.txt

One difference between batch and interactive modes: in interactive mode, a prompt is

printed (tash>). In batch mode, no prompt should be printed.

You should structure your shell such that it creates a process for each new command (the

exception are built-in commands, discussed below). Your basic shell should be able to

parse a command and run the program corresponding to the command. For example, if

the user types ls -la /tmp, your shell should run the program /bin/ls with the given

arguments -la and /tmp (how does the shell know that ls is in /bin? It's something called

the shell path; more on this below).

Structure

Basic Shell

The shell is very simple (conceptually): it runs in a while loop, repeatedly asking for input

to tell it what command to execute. It then executes that command. The loop continues

indefinitely, until the user enters the built-in command exit, at which point it exits. That

is it!

For reading lines of input, you should use getline(). This allows you to obtain arbitrarily

long input lines with ease. Generally, the shell will be run in interactive mode, where the

user types a command (one at a time) and the shell acts on it. However, your shell will

also support batch mode, in which the shell is given an input file of commands; in this

case, the shell should not read user input (from stdin) but rather from this file to get the

commands to execute.

In either mode, if you hit the end-of-file marker (EOF), you should call exit(0) and exit

gracefully.

To parse the input line into constituent pieces, you might want to use strtok() (or, if doing

nested tokenization, use strtok_r()). Read the man page (carefully) for more details.

To execute commands, look into fork(), exec(), and wait()/waitpid(). See the man pages

for these functions and read the relevant book chapter for a brief overview.

You will note that there are a variety of commands in the exec family; for this project, you

must use execv, not any other call in the exec family. You should not use

the system() library function call to run a command. Remember that if execv() is

successful, it will not return; if it does return, there was an error (e.g., the command does

not exist). The most challenging part is getting the arguments correctly specified.

Paths

In our example above, the user typed ls but the shell knew to execute the

program /bin/ls. How does your shell know this?

It turns out that the user must specify a path variable to describe the set of directories to

search for executables; the set of directories that comprise the path are sometimes called

the search path of the shell. The path variable contains the list of all directories to search,

in order, when the user types a command.

Important: Note that the shell itself does not implement ls or other commands (except

built-ins). All it does is find those executables in one of the directories specified

by path and create a new process to run them.

http://www.ostep.org/cpu-api.pdf

To check if a particular file exists in a directory and is executable, consider

the access() system call. For example, when the user types ls, and path is set to include

both /bin and /usr/bin, try access("/bin/ls", X_OK). If that fails, try "/usr/bin/ls". If that

fails too, it is an error.

Your initial shell path should contain one directory: `/bin'

Note: Most shells allow you to specify a binary specifically without using a search path,

using either absolute paths or relative paths. For example, a user could type

the absolute path /bin/ls and execute the ls binary without a search path being needed.

A user could also specify a relative path which starts with the current working directory

and specifies the executable directly, e.g., ./main. In this project, you do not have to worry

about these features.

Built-in Commands

Whenever your shell accepts a command, it should check whether the command is

a built-in command or not. If it is, it should not be executed like other programs. Instead,

your shell will invoke your implementation of the built-in command. For example, to

implement the exit built-in command, you simply call exit(0); in your tash source code,

which then will exit the shell.

In this project, you should implement exit, cd, and path as built-in commands.

• exit: When the user types exit, your shell should simply call the exit system call

with 0 as a parameter. It is an error to pass any arguments to exit.

• cd: cd always takes one argument (0 or >1 args should be signaled as an error). To

change directories, use the chdir()system call with the argument supplied by the

user; if chdir fails, that is also an error.

• path: The path command takes 0 or more arguments, with each argument

separated by whitespace from the others. A typical usage would be like this: tash>

path /bin /usr/bin, which would add /bin and /usr/bin to the search path of the

shell. If the user sets path to be empty, then the shell should not be able to run any

programs (except built-in commands). The path command always overwrites the

old path with the newly specified path.

Redirection

Many times, a shell user prefers to send the output of a program to a file rather than to

the screen. Usually, a shell provides this nice feature with the > character. Formally this is

named as redirection of standard output. To make your shell users happy, your shell

should also include this feature, but with a slight twist (explained below).

For example, if a user types ls -la /tmp > output, nothing should be printed on the screen.

Instead, the standard output of the ls program should be rerouted to the file output. In

addition, the standard error output of the file should be rerouted to the file output (the

twist is that this is a little different than standard redirection).

If the output file exists before you run your program, you should simply overwrite it (after

truncating it).

The exact format of redirection is a command (and possibly some arguments) followed

by the redirection symbol followed by a filename. Multiple redirection operators or

multiple files to the right of the redirection sign are errors.

Note: don't worry about redirection for built-in commands (e.g., we will not test what

happens when you type path /bin > file).

Parallel Commands

Your shell will also allow the user to launch parallel commands. This is accomplished with

the ampersand operator as follows:

tash> cmd1 & cmd2 args1 args2 & cmd3 args1

In this case, instead of running cmd1 and then waiting for it to finish, your shell should

run cmd1, cmd2, and cmd3 (each with whatever arguments the user has passed to it) in

parallel, before waiting for any of them to complete.

Then, after starting all such processes, you must make sure to use wait() (or waitpid) to

wait for them to complete. After all processes are done, return control to the user as usual

(or, if in batch mode, move on to the next line).

Program Errors

The one and only error message. You should print this one and only error message

whenever you encounter an error of any type:

 char error_message[30] = "An error has occurred\n";
 write(STDERR_FILENO, error_message, strlen(error_message));

The error message should be printed to stderr (standard error), as shown above.

After most errors, your shell simply continue processing after printing the one and only

error message. However, if the shell is invoked with more than one file, or if the shell is

passed a bad batch file, it should exit by calling exit(1).

There is a difference between errors that your shell catches and those that the program

catches. Your shell should catch all the syntax errors specified in this project page. If the

syntax of the command looks perfect, you simply run the specified program. If there are

any program-related errors (e.g., invalid arguments to ls when you run it, for example),

the shell does not have to worry about that (rather, the program will print its own error

messages and exit).

Miscellaneous Hints

Remember to get the basic functionality of your shell working before worrying about all

the error conditions and end cases. For example, first get a single command running

(probably first a command with no arguments, such as ls).

Next, add built-in commands. Then, try working on redirection. Finally, think about parallel

commands. Each of these requires a little more effort on parsing, but each should not be

too hard to implement.

At some point, you should make sure your code is robust to white space of various kinds,

including spaces () and tabs (\t). In general, the user should be able to put variable

amounts of white space before and after commands, arguments, and various operators;

however, the operators (redirection and parallel commands) do not require whitespace.

Check the return codes of all system calls from the very beginning of your work. This will

often catch errors in how you are invoking these new system calls. It's also just good

programming sense.

Beat up your own code! You are the best (and in this case, the only) tester of this code.

Throw lots of different inputs at it and make sure the shell behaves well. Good code comes

through testing; you must run many different tests to make sure things work as desired.

Don't be gentle -- other users certainly won't be.

Finally, keep versions of your code. More advanced programmers will use a source control

system such as git. Minimally, when you get a piece of functionality working, make a copy

of your .c file (perhaps a subdirectory with a version number, such as v1, v2, etc.). By

keeping older, working versions around, you can comfortably work on adding new

functionality, safe in the knowledge you can always go back to an older, working version

if need be.

Testing

Make sure you compile your program as follows:

gcc tash.c –o tash -Wall -Werror -O

There should not be any error messages and warning during compilation.

Sample testcases are in the directory /cs5348-xv6/src/testcases/P1 in csjaws.utdallas.edu.

Additional testcases may be provided later. You should also write your own test cases and

test thoroughly. Writing good testcases is an important skill you need to do well in your

career.

Your program may end up creating too many processes than intended due to a bug (fork

bomb). To prevent yourself from being locked out of the system limit the number of

processes you can create by adding this line to .bashrc file in your home directory.

ulimit –u 100

In case you reach the limit of 100, then login through a different terminal and kill tash and

all the processes created by tash. Use commands “ps –u” and kill pid.

Hand-in Instructions

Name your program as tash.c. Copy your source code to the directory /cs5348-

xv6/xxxyyyyyy/P1 in csjaws, where xxxyyyyyy is your netid. (You will know more about

csjaws in Exercise 1.)

If you have worked with a partner, only one of you need to submit the files. But both of

you should create a text file named PARTNER in /cs5348-xv6/xxxyyyyy/P1 and save your

partner’s name and netid in the file.

Grading

Source code should be structured well with adequate comments clearly showing the

different parts and functionalities implemented. 10% of the total points is allotted for style

and comments, and the remaining 90% is for correctness.

The TA will compile the code and test it. Add a note at the top of the source code in case

you are using any special flags for compilers/linkers.

You will also be called by the TA to demonstrate your code. If you are not able to explain

the working of your code, you will not be given any points.

